
CSE 333 23wi
Section 2
Debugging and Structs

Checking In & Logistics
Any questions, comments, or
concerns?
● Exercises going ok?
● Lectures making sense?

2

● Exercise 2:
○ Due Friday @ 11:00am (1/13)

● No Class on Monday!!!!!!
● HW1 Partner Form

○ Due Thursday @ 11:59pm (1/12)
○ Form is pinned on ED

● Homework 1:
○ Due Thursday @ 11:59pm (1/19)
○ Start Early!

Structs and Typedef Review

3

Defining Structs
● To define a struct, we use the struct statement, which typically has a name (a

tag) and must have one or more data members
○ This defines a new data type!

4

struct simplestring_st {
 char* word;
 int length;
};
struct simplestring_st my_word;

Typedef
● The C Programming language provides the keyword typedef, which defines an

alias (alternate name) for an existing data type
○ This can be used in combination with a struct statement

typedef struct simplestring_st {
 char* word;
 int length;
} SimpleString;
SimpleString my_word;

struct simplestring_st {
 char* word;
 int length;
};
typedef struct simplestring_st SimpleString;
SimpleString my_word;

5

Structs and Memory Diagrams
● struct instance is a box, with individual boxes for fields inside of it,

labelled with field names
○ Even though we know that field ordering is guaranteed, we can be loose with

where we place the fields in our diagram

6

typedef struct simplestring_st {
 char* word;
 int length;
} SimpleString;
SimpleString my_word; ?

my_word
length

word
?

Structs and Pointers
● “.” to access field from struct instance
● “->” to access field from struct pointer

char cse333[] = "cse333";
SimpleString cse333_ss;
SimpleString* cse333_ptr = &cse333_ss;

cse333_ss.word = cse333;
cse333_ptr->length = strlen(cse333);

6
cse333_ss

length

word

'c' 's' 'e' '3' '3' '3' '\0'cse333

cse333_ptr

7

typedef struct simplestring_st {
 char* word;
 int length;
} SimpleString;

Passing Structs as Parameters
● Assignment copies over all of the field values

○ Unlike reference copying in Java

● Structs are pass-by-copy (as arguments and return values)
○ Can imitate pass-by-reference by passing pointer to struct instance

instead

8

Debugging Tools

9

Debugging

● ✨ Debugging is a skill that you will need throughout your career! ✨
● The 333 projects are big with lots of potential for bugs

○ Learning to use the debugging tools will make your life a lot easier
○ Course staff will help you learn the tools in office hours, too

● Debugging tool output can be scary at first, but extremely useful once you know
how to parse it

● Why canʼt I just use print statements? They got me through 14x?

○ Bigger badder bugs beseech better debuggers!

10

Debugging Strategies

Many debugging strategies exist but hereʼs a simple 5 step process!

1. Observation: Something is wrong with your program!
2. Hypothesis: What do you think is going wrong?
3. Experiment: Use debuggers and other tools to verify the problem
4. Analyze: Identify and implement a fix to the problem.
5. Repeat steps 1-4 until bug free!

11

Key debugging skills to master
1. Stop at “interesting” places

○ Debug after a crash or segfault
○ Use breakpoints to stop during execution

2. Look around when stopped
○ Print values of variables
○ Look at source code
○ Look up/down call chain

3. Resume execution
○ Incrementally, step at a time
○ Until next breakpoint
○ Until finished

12

333 Debugging Options
● gdb (GNU Debugger) is a general-purpose debugging tool

○ Stops at breakpoints and program crashes
○ Lots of helpful features for tracing code, checking current expression values, and

examining memory

● valgrind specifically check for memory errors
○ Great for catching non-crashing odd behavior (e.g., using uninitialized values, memory

leaks on the heap)
○ If your code uses malloc, should use --leak-check=full option

13

Basic Functions in GDB
● Setting breakpoints:

○ break <filename>:<line#>
● Advancing

○ step – into functions
○ next – over functions
○ continue – to next break

14

● Reading Values
○ print – evaluate expression once
○ display – keep evaluating expression

● Examining memory
○ x – dereference provided address
○ bt – backtracing

● Reference Card:
https://courses.cs.washington.edu/courses/cse333/23wi/debug/gdb_refcard.pdf

https://courses.cs.washington.edu/courses/cse333/23wi/debug/gdb_refcard.pdf

Common Errors

● Misusing Functions: Read documentation (online, through man pages, or the .h
files for your homework) for function parameters and function purpose
○ Oftentimes, this leads to unexpected results!

● Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a
previously-freed pointer, or many other things.
○ GDB automatically halts execution when SIGSEGV is received, useful for debugging

● Memory “Errors”: Many possible errors, commonly use of uninitialized memory or
“memory leaks” (data allocated on heap that does not get freeʼd).
○ Use valgrind to help catch memory errors!

15

Trying to Run wordcount.c

We have a program wordcount.c that accepts a string from the user and reverses it!

● wget https://courses.cs.washington.edu/courses/cse333/23wi/sections/02/code/wordcount.c

● wget https://courses.cs.washington.edu/courses/cse333/23wi/sections/02/code/Makefile

● run make to compile the code
● run make val to run valgrind

But it has a few problems… letʼs take a look!

16

https://courses.cs.washington.edu/courses/cse333/23wi/sections/02/code/wordcount.c
https://courses.cs.washington.edu/courses/cse333/23wi/sections/02/code/Makefile

Exercise 1

17

Complete the Memory Diagram

int main(int argc, char* argv[]) {
 char comp[] = "computer";
 WordCount comp_count = {comp, 5};
 WordCount* comp_ptr = &comp_count;

 printf("1. %s, %d\n", comp_ptr->word,
 comp_ptr->count);
 ...
}

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'

main

Note: boxes with a function
name above are local
variables on the stack

18

comp_count
count

word

comp

comp_ptr

5

Console output

1. computer, 5

5
comp_count

count

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

comp_ptr

main

 // continued main code
 IncreaseCount(*comp_ptr);
 printf("2. %s, %d\n", comp_ptr->word,
 comp_ptr->count);
 ...
}

void IncreaseCount(WordCount wc) {
 wc.count += 1;
}

5

IncreaseCount

wc
count

word

6

19

Console output

1. computer, 5
2. computer, 5

 // continued main code
 CapitalizeWord(comp_ptr);
 printf("3. %s, %d\n",
 comp_ptr->word,
 comp_ptr->count);
 ...
}

void CapitalizeWord(WordCount* wc_ptr) {
 wc_ptr->word[0] &= ~0x20;
}

5
comp_count

count

word

comp

comp_ptr

main CapitalizeWord

wc_ptr'C' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'

20

1. computer, 5
2. computer, 5
3. Computer, 5

Console output

 // continued main code
 *comp_ptr = ReverseWord(comp_ptr);
 printf("4. %s, %d\n",
 comp_ptr->word,
 comp_ptr->count);
 return EXIT_SUCCESS;
}

5
comp_count

count

word

comp

comp_ptr

main

'C' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'

ReverseWord

wc_ptr

?count

word

The Heap

∅

rev

WordCount ReverseWord(WordCount* wc_ptr) {
 WordCount* rev = (WordCount*)
 malloc(sizeof(WordCount));
 rev->word = NULL;
 strcpy(rev->word, wc_ptr->word);
 ...

What happens with strcpy()?
Youʼll investigate in Exercise 2!

21

comp_count
count

word

'C' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

comp_ptr

main

5

IncreaseCount

count

word

6

CapitalizeWord

wc_ptr

ReverseWord

wc_ptr The Heap

?count

word ∅rev

22

The Stack

ch ?
L ?

R ?

Exercise 2

23

Fix 1: Doesn’t increment

● Tool help: stepping through code with gdb

● Old version:
void IncreaseCount(WordCount wc) {
 wc.count += 1;
}

● New version:
void IncreaseCount(WordCount* wc_ptr) {
 wc_ptr->count += 1;
}

24

Fix 2: Segfault

● Tool help: run in gdb to find segfault, man for strcpy
● Old version:

rev->word = NULL;
strcpy(rev->word, wc_ptr->word);

● New version:
rev->word = (char*) malloc((strlen(wc_ptr->word) + 1)
 * sizeof(char));
strcpy(rev->word, wc_ptr->word);

25

Fix 3: Doesn’t reverse string

● Tool help: break on ReverseWord, step through code,
print /s rev->word at end of function (prints as string)

● Old version:
char ch;
int L = 0, R = strlen(rev->word);

● New version:
char ch;
int L = 0, R = strlen(rev->word) - 1;

26

Fix 4: Reading uninitialized memory

● Tool help: run under valgrind, identify error line number

● Old version:
Did not set count!

● New version:
rev->count = 0;

27

Fix 5: Memory leaks

● Tool help: run under valgrind, identify unfreed allocation line
numbers

● Old version:
WordCount ReverseWord(WordCount* wc_ptr) { ...
return *rev; }

● New version:
WordCount* ReverseWord(WordCount* wc_ptr) { ...
return rev; }
At end of main: free(comp_ptr->word);
 free(comp_ptr);

28

Exercise 3

29

Style Fixes

● Tool help: None? Lecture slides! Google C++ Style Guide!

● malloc error checking:
if (rev == NULL) { return NULL; }
if (rev->word == NULL) { return NULL; }

● struct passing:
WordCount* ReverseWord(WordCount wc);

30

Some Debugging Tips

● Count and track where you call malloc() to make it easier for you to call free
later

● Run valgrind frequently, for example after implementing a particular method
● Running gdb + backtrace after a segfault is a good place to start debugging
●

31

Exercise 4

32

Complete the Memory Diagram

int main(int argc, char* argv[]) {
 char comp[] = "computer";
 SimpleString ss = {comp, strlen(comp)};
 SimpleString* ss_ptr = &ss;

 printf("1. %s, %d\n", ss_ptr->word,
 ss_ptr->length);
 ...
}

Note: boxes with a function
name above are local
variables on the stack

33

Console output

1. computer, 8

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

length

word

The Heap

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

 // continued main code
 char cse[] = "cse333";
 InitWord(cse, ss_ptr);
 printf("2. %s, %d\n", ss_ptr->word,
 ss_ptr->length);
 ...
}

void InitWord(char* word, SimpleString* dest) {
 dest = (SimpleString*)

malloc(sizeof(SimpleString));
 dest->length = strlen(word);
 dest->word = (char*) malloc(sizeof(char) *

(dest->length + 1));
 strncpy(dest->word, word, dest->length + 1);
 }

?InitWord

dest

34

Console output

1. computer, 8
2. computer, 8

word

'c' 's' 'e' '3' '3' '3' '\0'cse

6

'c' 's' 'e' '3' '3' '3' '\0'

The Heap

ss
length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

8

InitWord

length

word

6

The Stack

'c' 's' 'e' '3' '3' '3' '\0'

'c' 's' 'e' '3' '3' '3' '\0'

new_word

ss_ptr

cse

Exercise 5 (Bonus)

36

Exercise 5

● InitWord doesnʼt initialize a SimpleString properly… how can we fix that?
● If we canʼt edit the original pointer… modify a pointer to the pointer in main!

37

void InitWord(char* word, SimpleString** dest) {
 dest = (SimpleString) malloc(sizeof(SimpleString));

 (*dest)->length = strlen(word);
 (*dest)->word = (char*) malloc(sizeof(char) * ((*dest)->length + 1));

 strncpy((*dest)->word, word, (*dest)->length + 1);
}

